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Abstract

We propose that the super-Arrhenius relaxation rates observed in glassy materials are deter-

mined by thermally nucleated rearrangements of increasing numbers of molecules at decreasing

temperatures. In our model of this mechanism, string-like fluctuations in the neighborhood of

shear transformation zones (STZ’s) provide routes along which rearrangements can propagate, and

the entropy associated with long enough strings allows the rearrangement energy to be distributed

stably in the surrounding material. We further postulate that, at low enough temperatures, these

fluctuations are localized on the interfaces between frustration-limited domains. Our result is a

modified Vogel-Fulcher formula at low temperatures that crosses over to a simple Arrhenius law

as the glass changes from being solid-like to liquid-like. To achieve agreement with experiment in

the crossover region, we need to make what seem to us to be overly strong assumptions about the

behavior of frustration-limited domains.
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I. INTRODUCTION

Recent developments in the shear-transformation-zone (STZ) theory of amorphous plas-

ticity [1, 2], especially its success in accounting for the behavior of bulk metallic glasses

[3, 4], have prompted us to take a fresh look at the super-Arrhenius rates that characterize

relaxation mechanisms in such materials. In our preceding STZ calculations, we have sim-

ply deduced these transition rates from experimental data and used them in predicting, for

example, nonlinear plastic responses to driving forces. To make further progress, it will be

useful to have a deeper understanding of the physical mechanism that underlies these rates

or, at least, to have a physically motivated model to help us determine relevant parameters.

The main assumption of the STZ theory is that a deformable glassy material is fundamen-

tally a solid in which irreversible molecular rearrangements occur at special sites – so called

“flow defects” or “STZ’s.”[5, 6, 7, 8] The STZ theory therefore differs from mode-coupling

theories [9, 10, 11], whose starting point is a liquid-like model. It also differs from earlier

flow-defect theories of solid plasticity in that it attributes the super-Arrhenius behavior not

to a temperature-dependent density of STZ’s (e.g. see [6, 12, 13, 14]) but, rather, to the

temperature dependence of the rates at which the STZ’s transform. (For a recent summary

of a wide variety of research in this and related fields, see [15].)

In the most recent version of the STZ theory [4], we characterized the configurational

degrees of freedom, i.e. the inherent states of the system [16], by an effective disorder temper-

ature; and we supposed that the STZ’s are especially deformable local density fluctuations

that are far out in the wings of this effective thermal distribution. We are concerned specif-

ically with the rates at which STZ’s switch from one orientation to another during shear

deformations, the rates at which they are created and annihilated, and also the rate at which

the effective temperature relaxes toward the temperature of the heat bath. More generally,

we are interested in the spontaneous (that is, thermally assisted but not externally driven)

mechanisms by which an amorphous solid makes transitions between its inherent states.

As has long been recognized in theories of glass dynamics (see especially Adam and

Gibbs [17]), a qualitative reason why transition rates might become anomalously slow at

low temperatures is that, as the temperature decreases, the statistically most probable

transition mechanisms will be those that involve increasingly large numbers of molecules.

When more molecules are participating, there will be larger numbers of routes by which the

2



transitions can occur and a correspondingly larger entropic reduction of the height of the

activation barrier. To carry out an actual calculation, however, we must make a model of

such a mechanism.

The model that we shall explore here is motivated in part by work of Glotzer and

colleagues [18, 19], who discovered in molecular-dynamics simulations that transitions be-

tween inherent states in glass-forming liquids take place via motions of string-like groups

of molecules. We postulate that, at temperatures low enough that most of the system is

tightly jammed, localized molecular rearrangements might be entropically enabled by strings

of small molecular displacements that distribute the disturbance throughout larger parts of

the material. This picture may be loosely related to that of Cohen and Grest [20], who pos-

tulated that the statistics of free-volume fluctuations in glassy systems might be determined

by the increase in communal entropy associated with the percolation of connected, possibly

stringy, regions of low density. In granular materials, our hypothetical mechanism might

be visualized as a kinetic fluctuation that allows molecules to undergo small displacements

along a force chain.

For simplicity, consider first just the spontaneous STZ creation rate. It is useful to think

of STZ creation as a thermally activated event in which the glassy analog of a vacancy

and an interstitial first form, then move away from one another, and finally stabilize at

an indefinitely large separation. More generally, the formation of an STZ is a spontaneous

increase in the configurational disorder of the system, as measured by the intensity of density

fluctuations. Suppose that, with a probability that we must calculate, the material in the

neighborhood of this event contains a string of relatively loose molecules that provides a

route along which the “vacancy” and the “interstitial” can propagate. Our strategy is to

estimate the height of the free-energy barrier over which this system must fluctuate in order

for it to become energetically favorable for the string to lengthen without bound. When that

happens, we postulate that a dynamically stable STZ has formed, and that whatever excess

energy was needed to cause the local rearrangement has been dissipated into the surrounding

medium. In short, we propose to solve a nucleation problem where the reaction coordinate

is the length of this string. The entropy associated with different string configurations is a

measure of the number of routes across this energy barrier and, therefore (see [21]), reduces

the free energy of the barrier for purposes of computing the nucleation rate. We present an

elementary theory of this mechanism in Section II.
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Our picture of localized, string-like fluctuations in an amorphous solid lends itself natu-

rally to the description of glasses at temperatures low enough that the system retains most

of its elastic properties, including its shear modulus. This is the region in which the behavior

is markedly super-Arrhenius. The picture is not so natural, however, at higher temperatures

where the material softens and undergoes an apparently smooth transition between solid-like

and liquid-like states, and where the super-Arrhenius behavior reverts to relaxation with a

temperature-independent activation energy. We cannot (yet) present a first-principles the-

ory that spans these liquid-like and solid-like regimes. However, in Section III, we present

what we believe is a plausible description of this “no-theory” region between solid-like and

liquid-like glasses, and we show how such a semi-phenomenological analysis might account

for experimental observations. As we shall see, our model contains too many adjustable

parameters and other ad hoc features for the fit to experimental data to be convincing.

However, our theory at least has the virtue that it allows us to assign physical meaning to

its constituent parameters and may even be experimentally falsifiable; thus it may lead to

productive new lines of investigation.

II. ELEMENTARY STRING MODEL

To describe the string model outlined in the preceding paragraphs, we let the string have

length N in units of some characteristic molecular length, say, ℓ, and suppose that it occupies

a region of size R in the neighborhood of the emerging STZ. The total excess free energy of

the system consists of several parts, which we denote:

∆G(N, R) = ∆G∞ + N e0 − T S(N, R) + Eint(N, R). (2.1)

The first term, ∆G∞, is the bare activation energy for the transition, that is, the energy

required to form the “vacancy” and the “interstitial.” Until these two defects separate from

each other, it will be energetically favorable for them simply to recombine; thus, especially

at low temperatures, we need the string (or some other rearrangement of the surrounding

molecules) to enable the system to reach a stable configuration. At high enough tempera-

tures, ∆G∞ ought to become the ordinary Arrhenius activation energy.

The remaining terms on the right-hand side of Eq.(2.1) describe the string. e0 is the

energy per unit step along it. S(N, R) is its entropy, which we obtain by computing the
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number of random walks of N steps extending a distance R. In the limit of large N , the

number of such walks, say W (N, R), is approximately

W (N, R) ≈ constant × qN exp

(

−
R2

2 N ℓ2

)

, (2.2)

where q is the number of choices that the walk can make at each step. Thus,

S(N, R) ≈ ν kB N − kB
R2

2 N ℓ2
; ν = ln q. (2.3)

The last term in Eq.(2.1), Eint(N, R), is a repulsive interaction energy that accounts

for the fact that no two pieces of the string can occupy the same position at the same

time. This part of the analysis resembles Flory’s calculation of excluded-volume effects in

polymers. [22, 23] Following Flory, we assume that Eint(N, R) is approximately the square

of the string density integrated over the volume occupied by the string. Therefore, using

Flory’s mean-field approximation, also in the limit of large N , we write

Eint(N, R) ≈ kB Tint
N2 ℓd

Rd
, (2.4)

where kB Tint is a repulsive energy (which contains dimensionless geometric factors) and d

is the dimensionality of the space in which this string exists. As we shall argue, it is not

necessarily true that d = 3.

Combining these terms, we have

∆G(N, R)

kB

≈
∆G∞

kB

− ν N (T − T0) + T
R2

2 N ℓ2
+ Tint

N2 ℓd

Rd
, (2.5)

where T0 ≡ e0/(ν kB). The activation barrier is a saddle point in the N , R plane. That is,

it is a minimum of ∆G(N, R) as a function of R and a maximum as a function of N . More

explicitly, the two R-dependent terms have a minimum at R = R∗(N, T ), where

[R∗(N, T )]d+2 ∝
N3

T
, (2.6)

which is the Flory expression for the swelling of a d-dimensional polymer chain. Inserting

this result into the R-dependent terms in (2.5), we find that the activation energy has the

following form as a function of N :

∆G∗(N) = ∆G(N, R∗) ≈ ∆G∞ + constant × T d/(d+2) N (4−d)/(d+2) − ν N kB (T − T0). (2.7)
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The second term on the right-hand side is positive and, for 1 < d < 4, is dominant for small

enough N ; the third term dominates at large N . For T > T0, the activation energy goes

through a maximum at N = N∗(T ), where

N∗(T ) ∝

[

T d/(d+2)

(T − T0)

]

d+2
2 (d−1)

. (2.8)

As in conventional nucleation theory, this fluctuation most probably will collapse for N <

N∗, but will grow without bound if N becomes larger than N∗. Thus the activation energy

∆G∗(T ) is the value of ∆G(N) at its maximum, that is,

∆G∗(T ) = ∆G(N∗, R∗) ≈ ∆G∞ + constant ×
T

d

2(d−1)

(T − T0)
4−d

2(d−1)

. (2.9)

For the naively expected case of d = 3, these results are entirely unsatisfactory. The T -

dependent factor in the activation energy, T 3/4/(T −T0)
1/4, has too weak a divergence to be

consistent with experimental data. Moreover, the energy scale is wrong. The implicit picture

is one in which the string consists of a chain of N monopolar, vacancy-like fluctuations, so

that e0 would be roughly equal to µ ℓ3, where µ is the shear modulus and ℓ is the molecular

length scale introduced previously. Such an energy would be of the order of an electron volt,

and would correspond to a temperature T0 in the range of 104 K – too large for our purposes

by about two orders of magnitude.

An apparently more plausible picture, and one which pertains specifically to the molecular

structure of glassy materials, emerges from the concept of “frustration-limited domains,”

introduced by Kivelson et al. [24, 25]. Their idea is that, in a glass-forming material,

the energetically preferred structure of small clusters of the constituent molecules is one

that cannot tile an infinite space. That is, the energetically favorable short-range order is

“frustrated” because it cannot extend over long distances. Thus a quenched glass may consist

of many domains, inside of which the molecules have arranged themselves so as to have their

preferred local coordinations – or some approximation thereto; but these coordinations are

violated on the interfaces between the domains. Accordingly, we speculate that the STZ

activity is localized on a network of two-dimensional interfaces that separate the domains. In

addition to giving us a rationale for choosing d = 2 in the preceding analysis, this hypothesis

allows the energy e0 to be much smaller than before, because the fluctuations are occurring

in regions where the molecules already are more loosely bound to each other than they are

within the bodies of the domains.
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Choosing d = 2 and restoring missing constants, we write Eqs. (2.6), (2.8), and (2.9) as

follows:

[R∗(N, T )]2 ≈
(

2 Tint

T

)1/2

ℓ2 N3/2; (2.10)

N∗(T ) ≈
1

2 ν2

Tint T

(T − T0)2
; (2.11)

and
∆G∗(T )

kB
≈

∆G∞

kB
+

Tint T

2 ν (T − T0)
. (2.12)

Apart from the extra factor of T , Eq.(2.12) looks much like the Vogel-Fulcher formula with a

linear divergence at T = T0. Thus, we know from earlier analyses [25, 26, 27] that Eq.(2.12)

will agree with experimental data near the glass temperature.

III. TRANSITION TO LIQUID-LIKE BEHAVIOR

The extra factor of T in Eq.(2.12), however, means that this formula predicts an excess,

Arrhenius-like activation energy kB Tint/2 ν in the limit T → ∞. (The situation is worse in

three dimensions, where the activation energy grows like T 1/2 at high temperatures.) This

physically unrealistic high-temperature behavior is a result of the fact that our large-N ,

mean-field approximations for the interaction energy and the entropy fail in the limit of small

N . In this limit, the string disappears and the interaction energy should vanish accordingly;

but our approximation says that the ratio N2/R2 in Eq.(2.4) goes to a constant. Note that

the failure of the large-N approximation, by definition, occurs at the same temperature

where the system switches from super-Arrhenius to simple Arrhenius behavior, and that

this transition region is apparently where the system also switches from solid-like to liquid-

like. Thus, in order to correct this unphysical feature of our results, we must confront the

challenge mentioned in the Introduction – that is, we must try to construct a model of the

transition between solid-like and liquid-like glasses.

As a first step in this investigation, we considered the possibility that a simple, ad hoc

change in our expressions for the interaction energy and entropy might solve the small-N

problem. Specifically, we corrected the interaction energy by noting that the number of

interacting pairs of string elements is proportional to N(N − 1) rather than just N2. There

is no such simple correction for the entropy, however, because S(N, R) is not a smooth

function of its arguments near N = 1. In order to test the potential relevance of a small-N
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correction, we simply enforced the correct behavior at N = 1 by multiplying our previous

expression for S(N, R) by (N −1)/N . Our resulting activation energy did, in fact, approach

∆G∞ at large T , but it did so over much too large a range of temperatures to agree with

experiment. This should not be surprising. We have every reason to believe that there is

new physics involved in the transition from solid-like to liquid-like behavior, and that this

new physics should become apparent in the form of a new energy scale or an equivalent

physical parameter.

The picture of a solid-like glass as a three dimensional mosaic of frustration-limited

domains is appealing in several respects. Most relevant to our considerations is the idea

that these domains are large and well defined in the super-Arrhenius region, and that their

characteristic size, say L(T ), decreases with increasing temperature and vanishes as the

system becomes liquid-like and its relaxation rates become simple Arrhenius. In our d = 2

approximation, we assumed that the critical excitation occupied a flat, interdomain region

whose linear extent R∗ was always much smaller than L(T ). We now relax that assumption

and examine the possibility that the d = 2 approximation loses its validity as the temperature

increases and that the critically long string – the one that determines the activation barrier

– becomes three dimensional.

The assumption of a temperature dependent L(T ) leads us to guess that a significant

part of the residual entropy of the glassy state resides in the relatively disordered inter-

faces between the domains. In that case, the entropy per unit volume contains a term that

scales like L(T )−1. Thus, if the entropy appears to extrapolate to zero at some non-zero

Kauzmann temperature, then the extrapolation of L(T ) would diverge at that temperature.

(We say “appears” because there may be no way, even in principle, to know whether that

divergence of length and time scales actually occurs.) If we further assume that the Kauz-

mann temperature is the same as our T0, that is, the point at which relaxation becomes

infinitely slow, then we might postulate that L(T ) ∝ (T − T0)
−p. Here, p is some exponent

that might be derived from first principles (which we wish we could do) or else be deduced

from experimental data (which we shall try to do later in this paper). We must understand

that the power law ceases to be valid above some temperature where L(T ) becomes smaller

than the molecular length scale ℓ. At that point, the entropy levels off at a liquid-like value,

signalling the upper edge of a specific-heat spike associated with an idealized glass-forming

anomaly.
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When L(T ) decreases so as to be comparable to or smaller than R, then the random

walk followed by the string has the possibility of moving out of its original plane, and the

interaction volume needed in the Flory-like analysis becomes ellipsoidal. Suppose that a

walk of N steps extends a distance R in the plane and a distance ±Z in the perpendicular

direction, so that the interaction volume (again, up to geometric factors that we absorb into

the energy kB Tint) is

Ωint = R2 (ℓ2 + Z2)1/2. (3.1)

To make a rough estimate of the number of walks in this volume, we note that the proba-

bility that any step in the original plane finds itself at the intersection between two domain

boundaries is proportional to ℓ/L(T ); thus we guess that a suitable generalization of Eq.(2.2)

might be

W (N, R, Z) ≈ constant × qN exp

[

−
R2

2 N ℓ2
−

L(T ) Z2

4 N ℓ3

]

. (3.2)

The factor 4 in the second term in square brackets restores spherical symmetry in the case

L(T ) = ℓ. The small-N corrections will be negligible in what follows, and therefore we shall

omit them. Our resulting generalization of Eq.(2.5) is:

∆G(N, R, Z)

kB
≈

∆G∞

kB
− ν N (T − T0)

+
T R2

2 N ℓ2
+

T L(T ) Z2

4 N ℓ3
+

Tint N
2 ℓ3

R2 (ℓ2 + Z2)1/2
. (3.3)

The next step is to minimize ∆G(N, R, Z) with respect to R and Z for fixed N . There are

two stationary solutions: one with Z2 > 0, which we call the “three-dimensional” case, and

another with Z = 0, which is the same as our earlier “two-dimensional” solution. Only one

of these is actually a minimum of ∆G(N, R, Z) in the R, Z plane. In the three-dimensional

case, the stationary point occurs at

[

R∗(N)

ℓ

]5

=
2 Tint N

3

T

(

L(T )

ℓ

)1/2

; (3.4)

[

ℓ2 + Z∗2(N)
]1/2

ℓ
=

(

2 Tint N
3

T

)1/5 (
ℓ

L(T )

)2/5

; (3.5)

and

1

kB

[∆G∗

3(N) − ∆G∞] ≡
1

kB

[∆G(N, R∗, Z∗) − ∆G∞]
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≈ −ν N (T − T0) +
5

2

[

T 2
int T

3 N L(T )

8 ℓ

]1/5

−
T L(T )

4 N ℓ
. (3.6)

In the two-dimensional case, Eq.(2.10) remains the analog of Eq.(3.4), and

1

kB
[∆G∗

2(N) − ∆G∞] ≈ −ν N (T − T0) + (2 T Tint N)1/2. (3.7)

The function ∆G∗

3(N) always lies below ∆G∗

2(N) except at N = Nc(T ),

Nc(T ) =

[

T L(T )2

2 Tint ℓ2

]1/3

, (3.8)

at which point ∆G∗

3(Nc) = ∆G∗

2(Nc) and the functions have equal slopes. The true minimum

of ∆G for fixed N occurs on the two-dimensional branch (Z = 0) for N < Nc and on the

three-dimensional branch (Z 6= 0) for N > Nc; therefore there is a crossover between the

two and three dimensional branches at the temperature Tc where N∗

2 (Tc) = Nc(Tc), with

N2(T ) being given by Eq.(2.11). That is, the crossover temperature is the solution of the

equation:
[

2 L(Tc)

ℓ Tc T 2
int

]2/3

ν2 (Tc − T0)
2 = 1. (3.9)

We are now ready to compare this theory with experimental data, first with the mea-

surements reported in [28, 29, 30, 31] for the structural glass ortho-terphenyl, and second

for the data reported in [32, 33] for the bulk metallic glass Zr41.2 Ti13.8 Cu12.5 Ni10 Be22.5. In

both cases, the experimental points that we show were obtained by deducing a temperature-

dependent activation energy from viscosity measurements, that is, by fitting the measured

Newtonian viscosity ηN (T ) to the function η0 exp (∆G∗(T )/kB T ). The theoretical analysis

in [4] implies that this procedure is equivalent to measuring ∆G∗(T ) up to slowly varying

logarithmic corrections.

The case of the structural glass is shown in Fig.1. We have taken the value ∆G∞/kB =

3150 K directly from [31]. The low-temperature (two dimensional) part of the theoretical

curve is shown as a dashed line for which the fitting parameters are T0 = 220 K, Tint =

1600 K, and ν = ln 4. The high-temperature part is shown by the dot-dashed curve. As

suggested above, we write

L(T ) = ℓ
(

T1 − T0

T − T0

)p

; (3.10)

where T1 is the temperature at which L(T ) = ℓ. Along with the preceding values of T0, etc.,

we choose p = 15 and T1 = 295. The inset shows the crossover between these two curves
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in detail and marks the crossover temperature, Tc
∼= 265 K, obtained from Eq.(3.9). Figure

2 shows the critical string size N∗(T ) for the same parameters used in Fig.1, and shows

separately the low-temperature (dashed curve) and high-temperature (dot-dashed curve)

approximations. Note that, on the high-temperature curve, N∗(T ) = 1 at T ∼= 350 K,

which is roughly the temperature at which the super-Arrhenius region ends. We also see at

the crossover between the curves that N∗(Tc) ∼= 50, which means that this crossover occurs

within the large-N region of the theory.

We show the analogous data for the metallic glass in Fig.3, with the same conventions

as in Fig.1. In this case, we have taken the experimental points from the viscosity data

shown in [32, 33] and have converted them ourselves to values of ∆G∗(T )/kB. To perform

this conversion, we first fit the high-temperature part of the data – above T ∼= 900 K – with

ηN
∼= η∞ exp (∆G∞/kB T ); we find η∞ = 1.78×10−10 and ∆G∞ = 24300 K. We then follow

the procedure described in [31] and plot T log (η/η∞) as a function of the temperature. We

again use ν = ln 4 and find T0 = 515 and Tint = 2800. There is substantial uncertainty about

the value of ∆G∞/kB here, because it is not clear whether some crystallization or diffusive

segregation of the constituents might have occurred in this multicomponent material at

higher temperatures. Moreover, we do not have a continuous set of points spanning the

high- and low-temperature regimes. Parameters for the high-temperature part were p = 15

(as before) and T1 = 750. It is interesting to note, however, that most of the deformation

measurements reported in [33] and discussed in [3, 4] were made in the low-temperature

regime, where our two-dimensional curve, which does not involve L(T ), fits the data quite

well. Figure 4 is the analog of Fig.2, showing N∗(T ) in the two different approximations.

Again, the crossover occurs within the large-N regime.

IV. CONCLUDING REMARKS

We believe that the analysis presented here has some strong, intuitively appealing fea-

tures. There also are places where, in order to obtain agreement with experiment, we have

had to stretch our physical intuition in ways that will need to be reconsidered.

Our strongest assertion is that, in the spirit of Adam and Gibbs [17], the super-Arrhenius

rates are truly nonequilibrium phenomena. That is, they describe transitions between near-

equilibrium, inherent states and not, as sometimes has been assumed, an equilibrium distri-
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bution associated with the states themselves. For example, it is assumed in [6, 12, 13, 14]

that the equilibrium density of flow defects has a Vogel-Fulcher form. The model developed

by Cohen and Grest [20] attributes super-Arrhenius behavior to percolation of liquid-like

regions in equilibrated states. On the other hand, our nonequilibrium interpretation emerges

naturally from the recent STZ theories [3, 4] , where the equilibrium distribution of STZ’s

is purely Boltzmannian, and the super-Arrehnius behavior appears only in the thermally

assisted fluctuation rate. We expect that this feature of our model, and its implication that

the anomalous rates must derive from some multi-particle thermally activated process, will

survive in later versions of this theory.

Our string model of the activation mechanism seems to us to be plausible enough to

be taken seriously. We have not yet succeeded in finding a better alternative. Its biggest

drawback is the fact that its simplest three-dimensional version is so obviously incorrect;

the inverse 1/4 power law in Eq.(2.9) seems completely inconsistent with experiment. Thus

we have been led to adopt a more literal picture of frustration-limited domains than seems

comfortable to us. This picture may be correct at low temperatures, where it produces the

familiar Vogel-Fulcher result; and its success may even provide support for the existence of

these zones in solid-like glassy systems.

On the other hand, the crossover to liquid-like behavior at higher temperatures, controlled

by the scale length L(T ) for frustration-limited domains, is far less compelling. In the

first place, our approximation for the entropy in Eq.(3.2) is at best a crude estimate of

the number of string configurations on the three-dimensional, multiply connected, array of

domain interfaces. More importantly, as we remarked in the Introduction, this intrinsically

solid-like picture must lose its validity as the temperature increases. The fact that we need

such a large exponent, p = 15, to describe the temperature dependence of the domain size

L(T ) leads us to believe that we are missing some important element of the physical situation

here. Perhaps a better approach would be to try to join the low-temperature theory at a

crossover to a liquid-like approximation such as some version of mode-coupling theory.
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FIG. 1: Fits of ortho-terphenyl data from [28, 29, 30, 31]. The dashed line is a fit of the low

temperature data with the theoretical curve from the two-dimensional theory (equation (2.12)).

Parameters are ∆G∞/kB = 3150 K, T0 = 220, Tint = 1600, and ν = ln 4. The dot-dashed line is

the three dimensional expression (3.6) for the same parameters and, p = 15 and T1 = 295. The

complete theoretical curve lies on the dashed line at low temperature and on the dot-dashed line

at higher temperature. The cross-over occurs at a temperature Tc ∼ 265K.

15



250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

FIG. 2: Values of N∗ for the two-dimensional (low-temperature) theoretical curve (dashed) and

for the three-dimensional (high-temperature) theoretical curve.
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FIG. 3: Fits of metallic glass data from [32, 33]. The dashed line is a fit of the low temperature

data with the theoretical curve from the two-dimensional theory (equation (2.12)). Parameters

are ∆G∞/kB = 24300K, T0 = 515, Tint = 2800, and ν = ln 4. The dot-dashed line is the three

dimensional expression (3.6) for p = 15 (as before) and T1 = 750.
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FIG. 4: Values of N∗ for the two-dimensional (low-temperature) theoretical curve (dashed) and

for the three-dimensional (high-temperature) theoretical curve.
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